Organic and tight
نویسندگان
چکیده
منابع مشابه
Organic and tight
This paper is motivated by the combinatorics of אω in L where there are canonical examples of scales, square sequences and other structures of PCF theory. There, too, concepts such as tight sets, mutually stationary sequences, and tightly stationary sequences have concrete reformulations in terms of fine structure. One reason for this analysis is that it leads to reasonable conjectures about si...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولFrom polymer to small organic molecules: a tight relationship between radical chemistry and solid-phase organic synthesis.
Since Gomberg's discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual "in-solution" radical chemis...
متن کاملOn Tight Components and Anti-Tight Components
A graph G = (V, E) is called factor-critical if G = ∅ and G − v has a perfect matching for every vertex v ∈ V (G). A factor-critical graph G is tight (anti-tight, respectively) if for any v ∈ V (G), any perfect matching M in G − v, and any e ∈ M , |N (v) ∩ V (e)| = 1 (|N (v) ∩ V (e)| = 2, respectively), where N (v) denotes the neighborhood of v and V (e) denotes the set of vertices incident wit...
متن کاملUniversal tight binding model for chemical reactions in solution and at surfaces. I. Organic molecules.
As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Pure and Applied Logic
سال: 2009
ISSN: 0168-0072
DOI: 10.1016/j.apal.2009.01.016